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Abstract

We consider the problem of accurately computing low Mach number flows, with

the specific intent of studying the interaction of sound waves with incompressible

flow structures, such as concentrations of vorticity. This is a multiple time (and/or

space) scales problem, leading to various difficulties in the design of numerical

methods. In this paper, we concentrate on one of these difficulties - the develop-

ment of boundary conditions at artificial boundaries which allow sound waves and
vortices to radiate to the far field. Nonlinear model equations are derived based

on assumptions about the scaling of the variables. We then linearize these about a

uniform flow and systematically derive exact boundary conditions using transform

methods. Finally, we compute useful approximations to the exact conditions which

are valid for small Mach number and small viscosity.



1 Introduction

The generation and interaction of sound waves with complex fluid flows is of great interest

both from the point of view of fundamental fluid mechanics and applied mathematics

and from the point of view of practical applications. Many important examples of these

phenomena occur at low Mach number. A short list includes sound generation and

propagation in water and the interaction of sound waves with laminar flames. Some

advantages of studying low Mach number flows are the absence of shocks and the clear

separation of 'incompressible' flow features, namely vortex dynamics, and the sound field.

A disadvantage is the multiple time scales, requiring accurate computation for very long

times as measured on the 'fast' scale. As a result, the numerical analysis of low Mach

number flow is somewhat undeveloped in comparison with analytical theories.

Among the particular difficulties in the construction of accurate and efficient numeri-

cal methods are the time stepping scheme and the choice of radiation boundary conditions

at artificial boundaries. The goal in choosing the time stepping procedure is to somehow

exploit the simplicity of the equations governing the fast dynamics (essentially the wave

equation) to allow large time steps. The problem with boundary conditions, which is the

main topic of this work, is to find computationally usable procedures (for example local

in time conditions) which are accurate over long times.

Essentially all problems in aero or hydroacoustics involve the radiation of energy to the

far field in the form of sound waves and vortices. Any computational study then requires

the introduction of artificial boundaries where accurate boundary conditions must be

imposed. There is a vast literature concerning the construction of such conditions. (See,

e.g. [4] and the references contained therein.) This literature is essentially divided into

separate streams treating either hyperbolic problems or dissipative problems such as

advection-diffusion equations. Our equations involve the coupling of a hyperbolic system

governing the sound waves and an advection-diffusion equation for the vorticity, again

acting on different time scales.

The remainder of the paper is organized as follows. In Section 2 we present the scal-

ings we assume hold for the isentropic Navier-Stokes system and use them to derive a

somewhat simplified set of nonlinear model equations. These are then linearized about

a uniform flow for the purpose of systematically deriving exact and approximate (in

the small Mach number - large Reynolds number limit) boundary conditions. The con-

struction is carried out in Section 3. The result is a reasonably simple set of boundary

conditions which combine 'standard' boundary operators of hyperbolic and advection-

diffusion type.



2 Scalings and Model Equations

Consider the Navier-Stokes equations for conservationof mass and momentum in a fluid

at constant entropy in two space dimensions:

Pt + up_ + vp_ + p'u_ + pv_ = 0, (2.1)

1 /z(4 Iv)ut + uu_ + vu_ + -p_p = P -_u_ + uyy + -_ _, , (2.2)

+ = • (2.3)

These must be supplemented by an equation of state relating pressure and density. For

simphcity in the present work we use the equation of state for a .y-law gas:

p= K/_, (2.4)

though eventually other equations of state, for example ones appropriate for liquids, will

be included in the model.

To put the equations in nondimensional form we introduce a characteristic length

scale, L, fluid velocity, S, and fluid pressure, P. From the latter we deduce a characteristic

density, D = (P/g) 1/'_, and sound speed, C 2 = 7P/D. We then have two important

dimensionless parameters, the Mach number which we take to be small and the Reynolds

number which we take to be large:

S SLD

M=_<<I, Re- >>1. (2.5)
#

There are two natural time scales, based respectively on the fluid velocity and sound

speed:
L L

Tfast- -- M-Tslow. (2.6)
Taow = _, C

As we are interested in flows where 'fast' sound waves are present, we choose the latter

as our characteristic time scale. We use the same letters for the dimenionless variables

as for the dimensioned variables above, except for the fast time variable which we call

r to maintain notational consistency with our study of the one-dimensional problem [7].

(We reserve t for the slow time, _ = M_'.) We then have:

p_ + Mpu_ + Mpv_ + Mup= + Mvp_ = 0, (2.7)

1 M (4 lv )u_. + Muu_ + Mvuy +-_p_ = ---_ -_u== + u_y +-_ _:y ,
(2.s)



1 = __M (4 1 )v_. + Muv:: + Mvv_ + -_-_p_ pRe -_v_ + v_:_ + -_ux_ , (2.9)

p=f. (2.10)

A glance at the momentum equations reveals potentially large O(M-! ) terms involv-

ing the pressure gradient. If indeed these terms were of that order we would expect the

velocities to become large and the local Mach numbers to become O(1). Therefore, if

the Mach number is to be low throughout the flow, the pressure gradient must be O(M).

This leads us to introduce a new variable, q, which contains the pressure variations. That

is:

p=l+_Mq, p=(l+TMq)l/_'=l+Mq+O(M2). (2.11)

Substituting this into the dimensionless system and discarding terms O(M 2) we finally

obtain our nonlinear model system:

q_ + (1 + Mq)u:_ + (1 + Mq)v_ + Muq:_ -I- Mvqv = O, (2.12)

M(4 1 )+ (1 - Mq)q + + = R--; + + , (2.13)

M(4 1 )v_ + (1 - Mq)q_ + Muv_ + Mvv_ = _ -_v, + v:= + ._u_y . (2.14)

Alternatively, we could have fixed the time scale, T, and then chosen from two natural

spatial scales, CT and ST. This suggests the possibility of multiple spatial scales present

in the solution, which is the case for many important aeroacoustic phenomena. To justify

the approximations, we must assume that L is chosen so that derivatives are O(1). For

certain problems, for example the aeolian tones produced by flow past a cylinder, this

implies that the sound waves will be slowly varying in space. We have not tried to make

use of this in our derivation of boundary conditions.

It is of interest to compare this model system to the equations considered by other

authors. Both Klainerman and Majda [9] and Kreiss, Lorenz and Naughton [11] have

studied the incompressible limit, M --_ 0. Then it is natural to take the slow time scale,

where 0/0_" is replaced by M-0/Or, and to suppose that pressure variations scale like M 2.

Then one obtains the incompressible Navier-Stokes equations by setting M = 0. This

is a singular perturbation problem, as the incompressible equations require fewer initial

conditions and fewer boundary conditions at inflow than the compressible equations.

Hence, there is a possibility of boundary layers for small M, as analyzed in [11]. It is

important that the conditions we develop do not generate such layers. Requirements on

the initial data so that these 'nearly incompressible' scalings are maintained are studied

both numerically and theoretically in [3].
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Setting M = 0 in our case leads instead to a linear symmetric hyperbolic system

governing the sound waves:

(q)(ol0)(q)(0ol)(q)(0)u + 100 u + 000 u = 0 .

v 000 v 100 v 0
-r x Y

(2.15)

Our boundary conditions must alsobe accurate for thissystem, which isequivalent to

the wave equation for q and the dilatation,u_ + v_, coupled with the condition that

vorticitybe constant. (For finiteM thismeans that vorticityisslowly varying.) In the

next sectionwe shallsee that our boundary condition construction involvesa standard

(ifunsatisfactorallysolved) problem in the design of boundary conditions for the wave

equation.

Finally,inorder to carryout an analyticstudy ofboundary conditionsusing transform

methods, we linearizeour model problem about a uniform flow,U, V. Again keeping the

same lettersfor the linearizedvariableswe have:

q,,. + u_ + vy + MUq_ + MVqy = O,

u. + q_ + MUu. + MVu_, = R---e -_u.,,_ + u_,y + -_v_y ,

v, + q_+ MVv_+ MV,_ = R---g-gv_,+ ,,_ + g,_ .

(2.16)

(2.17)

(2.18)

3 Boundary Conditions for the Model Problem

To explain our principle of deriving exact boundary conditions, we consider a general

constant coefficient Cauchy problem of the form

z0t=P(0 O.w,
cgx, Sy ) (x,y) e R 2, t>O (3.1)

w(x,y,O) = .f(z,y). (3.2)

It is assumed that f E L 2 and that (3.1)-(3.2)is well-posed in L 2. (See [101 for a definition

and discussion of this concept.) Also, we assume the initial data have compact support

in x. More precisely, we assume that f(x, y) is only nonzero for

-L+6<z<L-6 where L>g>0. (3.3)

We want to replace the Canchy problem by an initial-boundary value problem (IBVP)

with boundary conditions at z = ±L so that the solution of the IBVP agrees with the



solution of the Cauchy problem restrictedto -L < z < L. Applying Fourier transfor-

mation in y and Laplace transformation in t to (3.1)-(3.2)we arriveat

d

•e (3.4)

For any fixedk,s,equation (3.4)isan ODE system inz, which isgenerallyofmixed order.

We want to derive boundary conditions at z = +L which determine the L2-solution of

(3.4).To thisend, we assume that (3.4)can be written as a first-ordersystem

d

_W- M(k,s)W = F(z,k), x e R. (3.5)

Well-posedness of (3.1)-(3.2)in L 2 implies that the symbol P(ikl,ik2) of the partial

differentialoperator P obeys an estimate

It Pt k"  )'ll re% kl,k2 R, t >_O. (3.6)

One can then prove that the system matrix M = M(k, s) in (3.5) has no purely imaginary

eigenvalues for Re s > a. Consequently, for Re s > a, the system can be transformed

to a block form in which the exponentially growing modes (in z) are separated from

the exponentially decaying ones. This is the main idea to obtain the exact boundary

conditions. We assume that M has dimension D x D with D_ eigenvalues in the left

half-plane and D+ = D - D_ eigenvalues in the right half-plane. We further assume, for

simplicity, that M can be diagonalized. A nonzero row vector ¢ of dimension D is called

a left eigenvector of M if eM = A¢.

Theorem. Let Re s > a and assume that M(k, s) has a complete set of eigenvectors.

Suppose that

eJ=¢J(k,s), ]=I,...,D_, (3.7)

are linearlyindependent lefteigenvectorsof M(k, s) corresponding to eigenvalues with

negative realparts. Similarly,suppose that

eJ=¢J(k,a), j:D_+I,...,D, (3.8)

are linearlyindependent lefteigenvectorsof M(k, s) corresponding to eigenvalues with

positiverealparts. The boundary conditions

"¢J(k,s)W= 0 at x =-L, j = 1,...,D_, (3.9)

eJ(k,s)W=O atz=L, j=D_+I,...,D, (3.10)



determine a unique solution of the system (3.5), namely the unique solution in L2(]K).

Inversion of the Fourier-Laplace transform leads to the solution of the Cauchy problem.

We now apply the general theory to the model system (2.16)-(2.18) where we assume

U > 0. (Hence, x = -L corresponds to an inflow boundary and z = L to an outflow

boundary of the underlying uniform flow.) Since the exact boundary conditions are

independent of the initial data, the data are ignored in the following. Fourier-Laplace

transformation leads to

a_l + "_ + ik,_ + MU_I_ + ikMV_l = O, (3.11)

4 ik

a_ + _ + MU_ + ikMV_ = Mv(-_z_, - k2"5 + "-__),.

Here v = 1/Re, and a = Ms is the dual to the stetched time variable,

determine the dispersion relation, we make the usual ansatz

(3.13)

r =t/M. To

= e_'¢1 , _i = e_¢_, _ = e_¢3 , (3.14)

and obtain the condition

det A(A) = O, (3.15)

the coefficients of the 3 x 3 matrix A(A) being at most quadratic in A. The polynomial

det A(A) has degree 5 and factors into the product of the quadratic

Q2(A) = a + ikMV + Mvk 2 + MUA - MvA 2, (3.16)

and the cubic

4My

Q3(A) = AS - k 2 - (_ + ikMV + + MUA
3

(This factorization is not accidental. In fact, if one writes (2.16)-(2.18) in terms of

w = vx- %, 6 = us +%, and q, then one obtains a second-order equation for w which is

decoupled from a system for (q, 6). The quadratic equation Q2(A) = 0 is the dispersion

relation for w whereas Q3(A) = 0 is the dispersion relation for the (q, 6) system.)

Henceforth we assume

O<v<M<<l, a=O(1), k=O(1). (3.1s)

Then the solutionsof Q2(A) = 0 are
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u0±(1+ (3.19)

with

= a + ikMV.

Setting M = 0 in Q3, one obtains the roots

(3.20)

The third root of Q3 is

A3,4 _ +v_ + k 2. (3.21)

3 b 3U

As _ 4M2v U MU + 4--u-" (3.22)

To determine the exact conditions, we need to rewrite (3.11)-(3.13) as a first-order

system for

w = (4,_,_x,_,_) r (3.23)
of the form

W_ = M(k,s)W, (3.24)

and then to determine the left eigenvectors of M. The eigenvalues of M are precisely the

roots A1,..., As. They satisfy the sign conditions:

ReAj>0 for j=l,3 (3.25)

Re Aj < 0 for j = 2,4,5 (3.26)

To leading order (recallthe assumption (3.18))one obtains for the corresponding left

eigenvectors of M:

¢1_ (ik, O,O,&,MU),

¢2 _ (ik, ikMU, O, b, 0),

¢3 _ (_ V_-+ k2,_,O,-ikMU, O),

¢4 _ (v/_ + k 2, _, O,-ikMV, 0),

Cs_ (b,-MUa, l,ik, O).

(3.2z)

(3.28)

(3.29)

(3.30)

(3.31)



The corresponding boundary conditions for j =

physical space. One obtains (to the order given):

At z = L (from j = 1):

q_ + v,- + MVv_ + MUv:_ = O.

At x = -L (from j = 2):

1,2,5 can be transformed easily to

(3.32)

qu + MUuy + v_. + MV% = 0. (3.33)

At x = -L (from j = 5):

q_. + MVqy - MUu._ + ux + v_ = 0 (3.34)

To translate the conditions for j = 3, 4 into physical space, locally in time, we must

approximate the root _ + k 2 by a rational function in a. This difficulty, which is

not unexpected, is precisely the one encountered in developing boundary conditions for

the wave equation. Most approximations proposed in the literature are designed to be

accurate in the (k/a) ---* 0 limit. However, we also want accuracy over long times,

suggesting the use of an approximation accurate as a = Ms _ O. Recently, a number

of papers have appeared dealing with the long time behavior of approximate boundary

conditons for the wave equation. Barry, Bielak, and MacCamy [1] introduce a useful

notion of dissipativity, where the large a approximation is modified to avoid exponential

error growth. Engquist and Halpern [2] propose conditions which are exact in both the

a _ c¢ and a --* 0 limits, and prove that solutions satisfying these rapidly converge to

the correct steady state. However, it has also been shown [6] that, for certain exterior

problems in two space dimensions, good long time accuracy is impossible to attain with

standard boundary conditions.

A simple approximation, appearing already in [2], is

ks a + Ikl.

If (_g)(k) denotes the Fourier transform of g(y), we define

(3.35)

Hg= _'-l(lkl(.T'g)(k)).

Then the conditions for j = 3, 4 translate to:

At x = L (from j = 3, _ + k s _ tr -4- Ikl):

- q._ - Hq + u,. + MVuu - MUvy = O.

(3.36)

(3.37)

At z = -L (from j = 4, v_ + k 2 _ tr + Ikl):

q, + Hq + u_. + MVuu - MUvy = O. (3.38)

9



Note that the conditions are still nonlocal in y since H is not a local operator. Often, this

does not lead to difficulties. For example, if the given problem is periodic in y and one

uses a discrete Fourier method in y-direction, then the operator H is easily discretized.

Instead of the approximation (3.35) one can also try

a(a + a) + alkl
x/a2+k 2_ , a>0, (3.39)

a+a

which goes over into (3.35) for a _ c¢. The approximate eigenvectors are multiplied

through by a + a_ and one obtains in physical space:

At x -- L (from j = 3, (3.39)):

a

- aHq + (-_r + a)(-q_. + m. + MVuy - MUrk) = 0. (3.40)

At x = -i (from j = 4, (3.39)):

O

aHq + (O-rr + a)(q_. + u._ + UVu_ - MUrk) = 0. (3.41)

Here the first two terms of the large a expansion of the exact condition are matched

as is the a --* 0 limit. The parameter a could be chosen to optimize the approximation.

Although we have, in these conditions, been careful to capture the leading order behavior

as a --* 0% we note that terms of the order va/M were earlier neglected.

So far we have not investigated the well-posedness of the resulting IBVPs, nor carried

out numerical experiments. In one space dimension, however, we have implemented

similar boundary conditions. We note that the troublesome symbol, Via 2 + k s, reduces

to a in one dimension, and so requires no approximation. Therefore, the Computations

only test the accuracy of the small M and small v approximations of the exact conditions.

Though a complete description of these experiments has appeared elsewhere [7], it is

worthwhile to show a typical example. Figure 1 contains graphs of q and u for an initial

pressure pulse. We see the pulse break up into left- and right-moving sound waves which

propagate through the boundary with no visible distortion.

In these computations we have used a reasonably fine mesh, 2401 points, and a CFL

number (based on the sound speed) of .2. The underlying velocity field is in the positive z

direction, so the left boundary is an inflow boundary and the right an outflow boundary.

The boundary conditions are then given by:

u+q=u_-u_=0, z=-1/2; (3.42)

u-q=0, x=1/2. (3.43)

These conditions correspond to the specialization of the j = 3, 4, 5 conditions to the

one dimensional case. Second order finite differences were used in both the interior and

10



at the boundary. The additional numerical boundary condition at z = L was second

order extrapolation of the outgoing characteristic variable u + q. Full details of these

computations, including a number of other cases, comparisons with conditions derived

from energy arguments, as well as higher order (in M) approximations, can be found in

[7].
q u

YxlO-3 YzlO "3

XxlO °3

/' / • s s +/

• \, ,, ii !

• _" /I
XI\; //
..... __..P/

.,' , "... r_.r
//, ,"TN,," , ,_.o_"

/i/ X,/ %....
I!! ,'\ .'\
I_' ," ," k, & ,:,"_-.

/j. • #_

¢ •

/' ¢ _

XxlO +3

..,100.00 -_O.O0 -O.C_l 200.00 400._, ,.400.00 .2DO.O0 -0.00 2DO.O0

Figure 1: Plot of q and u, M = .1, v = .01.

It is interesting to compare these conditions to others which have appeared in the

literature. Gustafsson and Stoor [5] proposed conditions based on energy arguments.

Their purpose was to solve slightly compressible flow problems in the absence of sound

waves, avoiding boundary layers at inflow. We do not expect their conditions to be

accurate if sound waves are present, and our experiments in one space dimension confirm

this. More in the spirit of this paper is Halpern's study of conditions for incompletely

parabolic perturbations of hyperbolic systems [8]. The philosophy is essentially the same;

derive expressions for exact conditions and approximate using the smallness of some

parameters. The small parameters used in that study are v and the tangential wave

number. (In our case k.) This results in a somewhat different set of boundary relations.

Our construction has the advantage of allowing k = O(1), as the assumption (k/o) 4:< 1

may be difficult to justify. However, the conditions in [8] do not require M << 1.

It is also interesting to compare the derived boundary conditions for the slightly

compressible model with boundary conditions derived by the same technique for the

linearized incompressible equations:

us + Uu_ + Vuy + Px = vAu, (3.44)

ii



vt + Uv, + Vv_ + p, = rAy, (3.45)

u. + % = 0. (3.46)

Proceeding as above and assuming 0 < v < < 1, one obtains the following approximations

to exact boundary conditions:

At z = -L:

Atx = L:

Hp + ut + Uu_ + Vu_ = O, (3.47)

p_ + Uu_ + vt + Vv_ = O. (3.48)

- Hp + ut + Uu_ + Vu_ = 0, (3.49)

py + Uv_ + vt + Vv_ = 0. (3.50)

If we formally set q = Mp, t = Mr and use u_ = -v_ then (3.45) becomes (3.38)

except for the q_-term; (3.46) becomes exactly (3.33); (3.47) becomes (3.37) except for

the -q_-term; and (3.48) becomes exactly (3.32). There is no boundary condition for the

incompressible equations corresponding to (3.34). Recall that the inflow condition (3.34)

comes from the eigenvalue As with large negative real part (see (3.22)). We note that

this correspondence requires that our approximation to x/_ A- k 2 approach Ikl as a ---* 0.

To summarize, we've derived a nonlinear model system for the study of low Mach

number flows with sound waves present and systematically derived approximate boundary

conditions at inflow and outflow for linearizations of the model system about a uniform

flow. The resulting equations display typical features of accurate conditions for the

incompressible Navier-Stokes equations combined with a standard radiation condition

for the wave equation. The latter, however, must be approximated so that long time

accuracy is obtained. A complete study of the proposed conditions, including numerical

experiments and analyses of well-posedness and the incompressible limit, are underway

and will appear elsewhere.
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